Thermal Energy in Raleigh, NC Modernizing Infrastructure Using an Inventive District Cooling Solution Financed via Performance Contract

Richard B. Beversdorf, PE Project Development Mgr

John S. Andrepont, President
The Cool Solutions Company

IDEA Annual Conference, Nashville, TN – June 2006

Outline

- Introduction & Background
- The Solution
 - District Cooling (DC) & Thermal Energy Storage (TES)
 - New and Old Chiller Plant Investments
 - High Chilled Water (CHW) Delta T
 - Installed Capacities and Loads
- Unique Results & Benefits
 - Managing Energy & Energy Costs
 - Expandability
 - Reliability & Redundancy
- Summary & Conclusions

Introduction and Background

State of NC gov't building complex – Raleigh, NC

- Aging energy infrastructure
- Rising energy costs
- Limited budget for modernization
- Decision to pursue Performance Contract:
- Financed by energy & maint. cost savings
- Late 2004 Request for Qualifications
- 1st half 2005 Detailed Audit phase
- Jan Nov 2006 Project Execution phase

Performance Contracting

- Guaranteed Energy Solution
- Paid for from guaranteed cost savings:
 - Energy reduced consumption and demand
 - Operational maintenance, service contracts
 - Capital Avoidance offset future planned projects, reallocate monies
- No capital expenditures incurred
- Energy education and awareness
- Meet energy efficiency initiatives & requirements

Performance Contracting Benefits

- Replaces Assets that are beyond useful life
- Provide Additional Capacity
- Leverages Limited Budgets and Resources
- Reduces Maintenance Cost
- Increases Comfort
- Generates Cash Flow
- Accommodates Future Expansion
- Ensures Quality and Operability

The Solution

Innovative approach (including items beyond RFP):

- Major expansion of DC network:
 - Modernization of old DC plant
 - Rehabilitation of old TES tank
 - Large new "packaged" DC plant
 - Large new TES tank
 - Control for high CHW Delta T
 - Did not replace chillers within buildings
- Lighting improvements
- HVAC and control improvements in buildings
- Water conservation

Benefits of the Solution

- Reduce energy use by over 20 million kWh/yr
- Reduce water use by over 10 million gals/yr
- Over \$2 million per year in energy savings
- ~\$18.9 million in new financed infrastructure
- Over \$7 million in future capital avoidance
- Improved building comfort
- Expanded cooling capacity and redundancy

The Backbone of the Solution – District Cooling (DC)

- Did <u>not</u> pursue in-building chiller replacements
- Expanded the DC network
- Investment focused on efficient new CHW plant
- Primary CHW source the new CHW plant
- Secondary source the old (rehab'd) CHW plant
- Peaking & back-up best of the in-bldg chillers
- Direct-buried un-insulated HDPE piping

The Key Enhancement of the Solution – Thermal Energy Storage (TES)

Existing TES Tank – 0.7 millions gals

- In-ground rectangular concrete tank
- Rehab'd after 18 years of non-use
- Repaired leaks; replaced broken diffusers; new integration
- ~7,100 Ton-hours at 39/55 °F CHWS/R temps
- Up to ~1,300 Ton discharge rate

<u>New TES Tank</u> – 2.7 million gals (architectural façade)

- Partly-buried cylindrical concrete tank, AWWA D110 Type III
- 26,270 Ton-hours at 39/55 °F CHWS/R temps
- Up to ~4,500 Ton discharge rate

TES minimizes chiller use in high-cost on-peak times <u>and</u> provides capacity at low cap. \$ vs. chiller plants.

Prioritizing Investments in Efficiency – New versus Old Chiller Plants

Existing CHW Plant – limited investment

- Retired 1 of 3 old inefficient chillers, in place
- Rehab'd 2 of 3 old chillers, for lower CHWS temp
- Orig design CHW Delta T was 12 °F (actual typ'ly 6 to 9 °F)
- Re-spec'd for CHW Delta T of 16 °F (39/55 °F CHWS/R)

New CHW Plant – "packaged" (vs. "stick-built") plant

- Footprint small plot; easy to site; less visual impact
- Schedule shorter overall; much shorter on-site time
- Efficiency high, w/ series chillers; high Delta T; low CHWS
- Price lower capital \$/Ton
- Performance guarantee of total plant Tons and kW/Ton

Optimization of the Solution – High Chilled Water (CHW) Delta T

- Raised CHW Delta T (from 6 to 9 °F) to 15 °F
- Enhanced capacity and reduced size & cost of DC piping, DC pumps, and TES tanks.
- Lowered CHWS at new and old chiller plants
- Raised CHWR using Pressure-Indep. FCVs
- Peaking / back-up chillers in the bldgs, used only rarely, will only serve their own bldgs

DC Capacity and Design Day Loads

New Packaged DC Plant Old (Rehab'd) DC Plant Peaking Chillers in Bldgs – Admin Bldg 485 T – Albemarle 450 T – Mus of History 515 T – Mus of Nat Sci 600 T – New Revenue 750 T New TES Capacity **Old TES Capacity** Total Chillers Only Total Chillers + TES 11,600 T Design Day Peak Load Design Day 24-hr Average

2,900 T (off-peak; on-pk as needed) 1,400 T (off-peak; on-pk as needed) 2,800 T (rarely, and only off-peak)

```
3,700 T (26,270 T-hrs)
800 T (7,100 T-hrs)
7,100 T
1,600 T
5,472 T (6,460 T w/ Leg & LOB)
3,756 T (4,388 T w/ Leg & LOB)
```

Unique Results and Benefits

- Managing Energy and Energy Costs
- Expandability for Future Load Growth

Reliability and Redundancy

Managing Energy and Energy Costs

- Each bldg & CHW plant is individually metered
- Each has different loads, load profiles, & tariffs
- In-bldg chillers used only off-peak, if ever
- Allows most bldgs to use "Small TOU" tariff
- CHW plants use attractive "TES" tariff
- Series chillers and variable speed pumping
- Custom Energy Mgmt System
- Extensive monitoring of system and each bldg

Keys to maximizing savings (and to project viability): managing loads (with DC &TES) <u>and</u> tariff choices

Expandability for Future Growth

- Project accommodates future expansion:
 - Load growth within buildings on the DC network
 - Addition of more existing buildings to DC network
 - Addition of future new buildings to DC network
- Several key steps were taken to achieve this:
 - DC headers oversized for addition of 2 more existing bldgs (committed in May 2006) + 3 future bldgs
 - Modest oversizing of new TES (fully useable now)
 - New CHW Plant designed for modular expandability

Project economics allowed these incremental investments <u>now</u>, rather than larger ones later.

Reliability and Redundancy

- At least "N+1" redundancy in critical mechanical items (chillers, pumps, cooling towers)
- Peak loads in all DC-connected buildings can be met in the hottest weather, even with the loss of the largest item, or the loss of TES.
- <u>Not</u> economically viable for <u>individual</u> buildings
- But DC (integrated system) approach allows it

The State enjoys this important & valuable benefit, solely as a result of pursuing the DC solution.

Preliminary Architect's Sketch

TES Tank Construction – March 2006

TES Tank Construction – May 2006

Summary

- Project combined: new and existing assets; DC, TES, plus lighting, HVAC, and water usage measures; all 100% self-financed by operating savings.
- 2. Large capital investment (\$18.9 million)
 - E.g. DC piping, New Energy Conservation Center (with its packaged chiller plant & TES), P-Indep FCVs
 - Fully justified by large operating savings vs. initial request to replace chillers within independent bldgs.
- 3. ESCO gets: attractive ROI and large NPV.
- 4. State gets (far beyond its original expectations): new infrastructure; no capital req'd; large savings in energy & energy cost; redundancy & reliability; ease of expandability; <u>and</u> a model for other State projects.

Conclusions

- The ESCO-led team of focused experts yielded an integrated solution whose benefits total more than the sum of the benefits of the parts.
- Performance Contracting is a viable and beneficial vehicle to implement major DC & TES
- Max savings (even the project viability) were achieved only by combining <u>all</u> key elements: DC, TES, Delta T enhancement, and tariff mgmt

Project demonstrates power of District Energy, especially when leveraged with complementary technologies that may be impractical or uneconomical to apply within individual buildings

Acknowledgements

- NC State Speros Fleggas, Greg Driver, Michael igodolHughes, Hany Butros, Cindy Browning, and Larry Shirley
- Performance Contract Project Team –

Team Leader DC / TES Consultant Packaged DC Plant TES Tank Supplier P-Indep FCV Supplier **Electric Utility**

– **Depco** Energy Services

- The Cool Solutions Company
- Engineering Consultant Affiliated Engineers, Inc.
 - <u>– TAS, Ltd.</u>
 - Natgun Corporation
 - Cool Systems / Flow Control Ind.
- Control System Supplier Siemens Building Technologies
 - Progress Energy

Or Contact:

Richard B. Beversdorf

rbeversdorf@pepcoenergy.com 803-312-1276

John S. Andrepont **The Cool Solutions Company** <u>CoolSolutionsCo@aol.com</u> 630-353-9690